In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach.

نویسندگان

  • Anne Endler
  • Sonja Reiland
  • Bertran Gerrits
  • Ulrike G Schmidt
  • Sacha Baginsky
  • Enrico Martinoia
چکیده

In plants the vacuolar functions are the cellular storage of soluble carbohydrates, organic acids, inorganic ions and toxic compounds. Transporters and channels located in the vacuolar membrane, the tonoplast, are modulated by PTMs to facilitate the optimal functioning of a large number of metabolic pathways. Here we present a phosphoproteomic approach for the identification of in vivo phosphorylation sites of tonoplast (vacuolar membrane) proteins. Highly purified tonoplast and tonoplast-enriched microsomes were isolated from photosynthetically induced barley (Hordeum vulgare) mesophyll protoplasts. Phosphopeptides were enriched by strong cation exchange (SCX) chromatography followed either by IMAC or titanium dioxide (TiO(2)) affinity chromatography and were subsequently analysed using LC-ESI-MS/MS. In total, 65 phosphopeptides of 27 known vacuolar membrane proteins were identified, including the two vacuolar proton pumps, aquaporins, CAX transporters, Na(+)/H(+) antiporters as well as other known vacuolar transporters mediating the transfer of potassium, sugars, sulphate and malate. The present study provides a novel source to further analyse the regulation of tonoplast proteins by protein phosphorylations, especially as most of the identified phosphorylation sites are highly conserved between Hordeum vulgare (Hv) and Arabidopsis thaliana.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes

Substantial evidence has confirmed that Polo-like kinases (Plks) play a crucial role in a variety of cellular processes via phosphorylation-mediated signaling transduction. Identification of Plk phospho-binding proteins and phosphorylation substrates is fundamental for elucidating the molecular mechanisms of Plks. Here, we present an integrative approach for the analysis of Plk-specific phospho...

متن کامل

Beyond translation: the renal phosphate census. Focus on "Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule".

Recent advances in mass spectrometry (MS) have provided means for large-scale phosphoproteomic profiling of specific tissues. Here, we report results from large-scale tandem MS [liquid chromatography (LC)-MS/MS]-based phosphoproteomic profiling of biochemically isolated membranes from the renal cortex, with focus on transporters and regulatory proteins. Data sets were filtered (by target-decoy ...

متن کامل

Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions.

Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein-protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein-protein interactions that drive phenotypic changes. Most commonly used m...

متن کامل

In vitro and in vivo phosphorylation of polypeptides in plasma membrane and tonoplast-enriched fractions from barley roots.

Phosphorylation of polypeptides in membrane fractions from barley (Hordeum vulgare L. cv CM 72) roots was compared in in vitro and in vivo assays to assess the potential role of protein kinases in modification of membrane transport. Membrane fractions enriched in endoplasmic reticulum, tonoplast, and plasma membrane were isolated using sucrose gradients and the membrane polypeptides separated u...

متن کامل

Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.

The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteomics

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2009